Automatic English stop consonants classification using wavelet analysis and hidden Markov models

نویسندگان

  • Marco Kühne
  • Roberto Togneri
چکیده

This paper compares wavelet and STFT analysis for a speakerindependent stop classification task using the TIMIT database. In the designed experiment the HMM classifier had to assign each test token to one of the following stop classes [d,g,b,t,k,p,dx]. On 6332 stops the wavelet features obtained an overall accuracy of 86 % which corresponds to a 14 % relative error reduction compared to the STFT baseline system. Furthermore an analysis of the HMM misclassifications revealed that voiced stops were highly confused with their voiceless unaspirated counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Segmentation of Continuous Speech Using Acoustic-phonetic Parameters and Statistical Learning

In this paper, we present a methodology for combining acoustic-phonetic knowledge with statistical learning for automatic segmentation and classification of continuous speech. At present we focus on the recognition of broad classes vowel, stop, fricative, sonorant consonant and silence. Judicious use is made of 13 knowledge-based acoustic parameters (APs) and support vector machines (SVMs). It ...

متن کامل

شناسایی میکرو آمبولی مغزی در سیگنال داپلر از روی ویژگی های غیر خطی

Abstract: An embolus is a blood clot, a fat globule or gas bubbles that may be freely circulating in bloodstream can stop the blood flow and lead to ischemia. In real time assessment of blood flow by Trans Cranial Doppler (TCD) method, travelling solid or gaseous micro emboli in the bloodstream by passing across the assessment area, causes a short time signal with high intensity. While TCD reco...

متن کامل

Integrating Statistical and Knowledge - based Methods for Automatic Phonemic Segmentation

This thesis presents a prototype system, which integrates statistical and knowledgebased methods, for automatic phonemic segmentation of speech utterances for use in speech production research. First, Aligner, a commercial speech alignment software, synchronizes the speech waveform to the provided text, using hidden Markov models that were trained on phones. Then, a custom built knowledge-based...

متن کامل

Stop Consonant Classification Using Wavelet Packet Transforms and a Neural Network

A wavelet packet transform is described to compute N spectral/temporal features for the 6 English stop consonants /b,p,d,t,g,k/. These features were used by a Binary Pair Partitioned neural network for speaker-independent classification of the stop consonants. The wavelet packet transform is generated by a pair of quadratic mirror filters which decompose the signal into a series of subbands ("f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006